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Abstract

The fluid dynamics of water in carbon nanotubes has been a subject of consider-
able interest in recent years due to advancements in measurement and manufactur-
ing techniques for nanofluidic devices. Experimental studies have revealed intriguing
flow characteristics of water in carbon nanotubes, including enhanced flow rates and
slip length phenomena. These observations challenge the conventional assumptions
of continuum theory used to describe fluid flow in macroscopic systems. In this
thesis molecular dynamics (MD) simulations are used to investigate the behaviour
of water in carbon nanotubes at the microscopic scale. These simulations provide
valuable insights into the dynamics and interactions of water molecules within the
confined nanotube environment. By creating a system which simulates a pressure-
driven flow, a comparison to analytical solutions for pipe flows in the context of the
Navier-Stokes equations is made. The finite element method is also employed to
solve the Stokes equation of a model system with adapted boundary conditions. At
last, the results found in this work are discussed and compared to the vast literature
in the field.
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2 Introduction
The efficient transport of water is essential for many processes, ranging from desalina-
tion and filtration to energy conversion. Over time, scientists and engineers have been
researching various methods to optimize the efficiency of water transport in macroscopic
systems. In recent years, the water transport properties of carbon nanotubes have gath-
ered much attention in the field of nanofluidics, because of their observed enhanced flow
rates at small scales. Possibilities for novel methods of efficient water desalination and
filtration using these properties have been proposed.
The ability to control water at the molecular level within nanometer-scaled channels is
also of great interest due to its occurrence in biological systems, such as ion channels in cell
membranes. Carbon nanotubes offer a promising platform for studying the behaviour of
water under nanoscale confinement due to their simple geometric structure. By exploiting
the enhanced transport properties, it is thought to be possible to design innovative devices
that can revolutionise technical processes. Understanding the fundamental principles
governing these flows is therefore crucial for advancing the field, with the possibility
of changing the world by increasing access to clean drinking water across water-poor
countries.
The primary objective of this thesis is to introduce, investigate and analyse the mecha-
nisms underlying water flow through carbon nanotubes. By exploring the fundamental
principles governing the behaviour of water molecules in these systems, this thesis aims
to introduce the author to the field of nanofluidics, replicate existing results and get in-
sights into the potential applications of carbon nanotube based systems. The research
objectives of this work are:

• Exploring the research field through hands-on simulation and data analysis work

• Investigating the influence of the carbon nanotubes diameter

• Analysing the effects of varying the pressure gradient on the water transport

• Studying the role of tube flexibility by changing bond parameters

• Trying to adapt continuum models to better capture microscopic effects

In chapter 3 the fundamentals of fluid mechanics, such as the Navier-Stokes equations,
the Reynolds number and the Hagen-Poiseuille equation will be explained. Molecular
effects of water in the microscopic scale will be shown to see the differences in contrast
to continuum mechanics. Chapter 4 will give an overview to the methodology used in
this thesis. This includes the molecular dynamics setups, simulation parameters and
the application of mixed finite element methods to the Stokes equation. A table of the
carried-out molecular dynamics simulations, which led to the results shown in this work,
is given in Chapter 5. In chapter 6 the analysis of the simulations is conducted by showing
velocity profiles, calculating slip lengths, checking the volume fluxed against the classical
laws, showing the effects of varying the parameters and showing a model simulated with
the finite element method. To compare to the literature we discuss the obtained results
in chapter 7. Chapter 8 concludes this thesis by giving an outlook on the research field.
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3 Theory

3.1 Continuum theory

The overarching research question in this work is on the validity of continuum theory on
nanoscales and on how one can adjust known fluid dynamics laws like the Hagen-Poiseuille
equation to better describe flows at this length scale. Therefore in chapter 3.1.1 we shall
first explain the basics of fluid mechanics. We then explain macroscopic pipe flow and
microscopic adjustments to better describe effects like velocity slippage. We of course,
also have to consider molecular effects like the polarity of water or hydrophobicity, which
will be done to sum up the further needed theoretical knowledge.

3.1.1 Navier-Stokes equations

The governing equations of fluid dynamics are the Navier-Stokes equations. A derivation
of these equations can be found in any book about continuum or fluid mechanics [1].
The general form of the Navier-Stokes equations which can be derived from the Cauchy
momentum equation is

ρ
Du

Dt
= ρ(

∂u

∂t
+ (u∇)u) = −∇p+∇ · τ + f (1)

With the deviatoric part of the Cauchy stress tensor τ and the pressure p which describes
the normal stress in the fluid. Calculating the divergence of the deviatoric stress tensor
τ by using the Stokes stress constitutive equation and plugging in the strain-rate tensor
ε one gets

τ = 2ηε = η(∇u+∇uT ) (2)

Using some tensor identities (∇ · (∇u) = ∆u and ∇ · (∇u)T = ∇(∇ · u)) and then using
the incompressibility condition ∇ · u = 0 the divergence of the deviatoric stress tensor
results as

∇ · τ = η∆u (3)

Plugging this in the general form of the Navier-Stokes equation the incompressible equa-
tions follow

ρ
Du

Dt
= ρ(

∂u

∂t
+ (u∇)u) = −∇p+ η∆u+ f (4)

3.1.2 Reynolds number, the laminar regime and Stokes flow

By comparing the magnitude of the terms of the incompressible equation with the help of
similarity theory [1] and dimensional analysis, the scaling of the convective term (which
is responsible for turbulent phenomena in fluids)

(u∇)u ≃ O(
U2

L
) (5)

and the viscous term (which opposes the turbulent behaviour of the convective term)
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η∆u ≃ O(
νU

L2
) (6)

can be estimated. The ratio of both terms is a statement about the turbulence of a
system. This can be done using a characteristic velocity scale U , a characteristic length
scale L and the kinematic viscosity ν of the fluid.

(u∇)u

ν∆u
≃ O(

UL

ν
) = O(Re) (7)

The resulting characteristic dimensionless quantity is called the Reynolds number Re

Re =
UL

ν
=
ρUL

η
(8)

The turbulent behaviour of a system also depends on the type of system (e.g. pipe
flow, open flow). Thus for different systems, a critical Reynolds number Recrit can be
experimentally determined. In the case of Hagen-Poiseuille pipe flow the critical Reynolds
number in the literature [1] is

Recrit ≈ 2300− 2500 (9)

Assuming that the Reynolds number Re of a system is small compared to the critical
Reynolds number Recrit one can assume laminar flow and therefore leave out the negligible
convective term. The resulting equation is called the Stokes equation. The stationary
form of the Stokes equation together with the incompressibility condition is

η∆u−∇p+ f = 0 in Ω (10)
∇ · u = 0 in Ω (11)

To formulate a boundary value problem one also employs Dirichlet boundary conditions
of the form

u = uD in ∂Ω (12)
(13)

3.1.3 Slip length & Hagen–Poiseuille equation

In fluid mechanics the pressure-driven flow through a cylinder with diameter d and length
L is described by a parabolic profile which is called pipe or Hagen-Poiseuille flow. In the
macroscopic case the flow velocity at the wall is set to be zero, which is called a no-slip
condition.

u|r= d
2
= 0 (14)

Given the geometry cylindrical coordinates are used. Through a symmetry argument one
can easily see that the velocity u may not depend on the coordinate z along the flow axis
(translational invariance) and should be axisymmetric along the flow axis. The derivation
of the solution of the Stokes equation in this geometry can be found in the book [1]. The
resulting velocity distribution inside of the cylinder follows as
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uz(r) =
∆p

16ηL
(d2 − 4r2) (15)

Through integrating the velocity profile over the cross section one gets a relation be-
tween the pressure difference ∆p and the volumetric flow rate Q. The relation is called
Hagen–Poiseuille law and is given by

∆p =
128ηQL

πd4
(16)

In the microscopic case of flows on the nanometer scale it seems that the macroscopic no-
slip condition can no longer be employed [2]. The reason for this will be further illustrated
in the next subsection 3.3. Instead a slip condition is employed using a characteristic
parameter which is called the slip length b [2]. The corresponding slip boundary condition

−b ∂
∂r
uz|r= d

2
= uz|r= d

2
(17)

describes the distance at which the linear continuation of the flow profile reaches zero.
This condition can be understood more easily through the following figure 1.

Figure 1: Illustration of the slip length b reproduced from [3]

If one employs such a boundary condition on the axisymmetric pipe flow problem [4], the
resulting velocity distribution

uz(r) = − ∆p

16ηL
(d2 + 4bd− 4r2) (18)

follows. The corresponding modified Hagen-Poiseulle law can be found by substituting

Qslip = Qclassical(1 +
8b

d
) (19)

into the original equation [5].
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3.2 Entrance resistance

In both macro- and microscopic flows the transition from bulk to pipe flow has an entrance
resistance. This resistance causes a pressure difference which needs to be overcome by the
fluid to flow into the pipe. In the case of Stokes flow the pressure drop can be modelled
by the following equation obtained from [6], where R is the radius of the aperture.

∆p = 3
3η

R3
Q (20)

3.3 Molecular behaviour of water

The behaviour of water at interfaces on the microscopic scale depends mainly on the
chemical nature of the interface material. Substances are classed by their relationship
with water into hydrophilics and hydrophobics. Hydrophilic materials are attracted to
water which results in larger friction and smaller flow rates. Often hydrophilic molecules
have polar OH groups which interact with the polarity of water. Hydrophilic interfaces
are prominent in biological systems, for example in membrane proteins such as ion chan-
nels [7]. Hydrophobic materials are thus classified as those substances which are not
attracted to water. Therefore they are usually not or only weakly polar.
Examples for small hydrophobic systems are the here describe carbon nanotubes. It is
obvious that these two different types of water attraction must influence the flow field.
In macroscopic fluid mechanics, a solid wall is most commonly modelled by a no-slip con-
dition. This means that both the normal as well as the tangential velocity components
vanish at a wall. The normal component must be zero because of the impermeability
through and the absolute rigidity of the wall. The argument why the tangential compo-
nent must disappear, however is, not obvious at all. Historically the no-slip condition was
first observed experimentally and accepted without a theoretical explanation. The first
discrepancies which showed differences to a no-slip condition where found in rarefied gas
flows. Here it is not obvious at all why matter should stick to the wall. Maxwell worked
on flow slippage on interfaces during his works on kinetic gas theory [8]. Because of
this the classic slip boundary condition is also named Maxwell-slip condition. In rarefied
gases the Knudsen number also plays an important role due to describing the relationship
between free path length and the geometrical size of a system. [9][10]. This shall however
not be described in more detail in this work due to a focus on liquid flows, where the
free path length is of the order of the molecular radius. Simulations and experiments
using water flows in carbon nanotubes indicate large slip lengths [3]. It has to be noted,
however, that results differ quite substantially depending on simulation parameters, the
helicity of the nanotube or used water models.
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To explain slip in microscopic systems another approach is also common. It uses a
radially-dependent viscosity which can explain higher velocities at the interface [5]. It
is also thought that the hydrophobic nature of carbon may result in small gas gaps or
depletion layers due to hydrogen-bonds overwhelming the water-carbon interactions.

Figure 2: Structuring: Arrangements of water molecules in different diameter sized nan-
otubes due to the confinement and hydrogen bonds. This image was reproduced from
[11]

The question of to what extent continuum mechanical models hold in nanometer sized
systems is also heavily discussed. According to [2] the bulk Navier-Stokes equations hold
up to confinements of a few nanometers. The authors of [12] review existing work on
this topic and list many different previously found length scales. They also find that
after around 150 molecular diameters no deviation to the macroscopic laws is expected,
independent of surface force effects. To sum up, it is very difficult to find generally
applicable consistent rules regarding nanoflows described by continuum theory. One
also has to address the effect of water polarity. Due to the hydrogen bonds the water
molecules arrange themselves energetically optimal. In bulk water, these arrangements
change very fast in time due to internal fluctuations. In nanometer sized channels, which
only have a diameter of a few molecular radii, the waters arrange themselves and then
keep this arrangement until the molecules are in bulk again due to the confinement. This
effect is called structuring and is displayed in Figure 2 for multiple carbon nanotube
sizes. This effect also describes the density profiles of water in small nanotubes. In these
nanotubes, the molecules arrange themselves in layers. Whereby in each layer there are
multiple waters. If the size of the nanotube is just right the density is zero in the middle.
Examples of density profiles in different size carbon nanotubes are shown in the following
figure 3. Much of these density distributions can already be explained by close-sphere
packing in cylinders, which show similar profiles.
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Figure 3: Density profiles of water molecules in small carbon nanotubes. This image was
reproduced from [13]
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4 Methodology

4.1 Molecular dynamics

The molecular dynamics simulations were implemented and carried out using the open-
source program GROMACS [14].

4.1.1 Simulation setup

To simulate the pressure-driven flow through a carbon nanotube a geometry was chosen
which consists of two water reservoirs which are separated by two graphene sheets. These
two sheets were fixated in space using a very stiff (kb = 100000 kJmol−1A−2) harmonic
potential.
Between the sheets, the carbon nanotube was added. At both entries of the nanotube
the carbon atoms of the sheets were removed. To generate the pressure which induces
the flow, another graphene sheet was added. The movement of this sheet is implemented
by a pull-code. This algorithm applies a constant force on the atoms of the sheet.
The setup of the geometry was created using a self-written Python script. The geometry
of graphene and the used nanotubes were imported by the script using the .xmol -file
format. This script carried out the positioning of the sheets and the tube. The geometry
of the cell was then adjusted to create infinite layers of graphene to match the periodic
boundary conditions. The solvation of the system with randomly oriented SPC/E-water
molecules was implemented.

Table 1: SPC/E water model parameters [15] [16]

parameter value unit

σ 3,166 Å
ϵ 0,65 kJ/mol
rOH 1 Å
θHOH 109,47 ◦

qO -0,847 e
qH -qO/2 e

The bonds of the graphene sheets and the nanotube were calculated and could be individ-
ually assigned different spring constants. At the end the geometry was written out in a
.gro-file and the information about the atoms (Lennard-Jones parameters, mass, bonds)
was written out in .itp-files.

Table 2: Carbon parameters

parameter value unit

σ 3,581 Å
ϵ 0,2775 kJ/mol
rCC 1,421 Å
θCCC 120 ◦

qC 0 e
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The following three geometries were created for the simulations

Figure 4: Geometry with a (13, 0)-nanotube

parameter value
(n, m) (13, 0)
dCNT 1,02 nm
lCNT 5,00 nm
nWAT 2420
nCAR 2188

hReservoir 4,61 nm
wReservoir 4,55 nm
lReservoir 1,50 nm

Table 3: Geometry parameters

Figure 5: Geometry with a (18, 0)-nanotube

parameter value
(n, m) (18, 0)
dCNT 1,41 nm
lCNT 5,00 nm
nWAT 9736
nCAR 4036

hReservoir 6,76 nm
wReservoir 6,32 nm
lReservoir 3,00 nm

Table 4: Geometry parameters

Figure 6: Geometry with a (30, 0)-nanotube

parameter value
(n, m) (30, 0)
dCNT 2,35 nm
lCNT 5,00 nm
nWAT 21230
nCAR 6620

hReservoir 8,98 nm
wReservoir 8,02 nm
lReservoir 4,00 nm

Table 5: Geometry parameters
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4.1.2 Simulation steps

The common workflow to equilibrate a system in MD-simulations is a combination of an
energy-minimization step, a NVT-step and a NPT step. This is then followed by the
main step, which is commonly referred to as the "production" run. In the first step,
the potential energy gets minimized by shifting and rotating all (specified) atoms of the
system. An example plot of a energy-minimization can be seen in Figure 27. In this
work, the minimization is carried out using a steepest-descent algorithm.

Figure 7: Potential convergence in energy minimization.

In the NVT-step a canonical-ensemble is simulated by conserving the particle number
N , the volume V of the system and the temperature T . To control the total energy
of the system and hold the temperature T constant, a thermostat algorithm is used.
This algorithm tries to approximate the canonical ensemble by adding/removing energy
to/from the system. In this work, a V-rescale thermostat which scales the volume V of
the system, was used. In the following Figure 8 the temperature of a simulated system
in the NVT-step can be seen. The behaviour of the pressure in the same simulation is
also shown.

Figure 8: Temperature and pressure in NVT.

In the NPT-step a barostat is added to the thermostat. These two algorithms try to
approximate an isothermal–isobaric ensemble by conserving the particle number N , the
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pressure P and the temperature T . Here, a Berendsen algorithm [17] is used which scales
the velocities of the particles. The trajectories of the temperature T and pressure p during
a NPT-step are visualized in the following figure 9.

Figure 9: Temperature and pressure convergence in NPT.

After the NPT equilibriation, the main simulation of the system is carried out in a
canonical-ensemble. The constant force pulling of the third graphene sheet is activated
at the beginning of this step.

4.2 Finite element method

The finite element part of this work was carried out using the open-source package FEnics
[18], which gives Python interfaces to C++ implementations of mesh generation, abstract
definition of mathematical problems and efficient solvers for linear and nonlinear systems
of equations.

4.2.1 Stokes flow - weak form

Since in the case of the Stokes equation, one has to approximate two different physical
quantities (the pressure field p and the velocity field u) one uses a mixed-finite element
formulation [19]. The following definition of the mixed-finite element formulation is found
in the literature[20]. The used function spaces for the Stokes system [20] are

Vg = {v ∈ [H1(Ω)]d : v|∂Ω = gD} (21)

Q = {q ∈ L2(Ω) : (q, 1) = 0} (22)

Where Vg is the velocity space, [H1(Ω)]d = [W 2
k (Ω)]

d is a Sobolev space of dimension
d (for the definition of Sobolev spaces see e.g. [19][20]), Q is the pressure space and
(q, 1) = 0, meaning that the pressure has zero mean value on the domain. This is to set
an absolute reference point for the pressure field.
To obtain the weak form of the Stokes equation, one multiplies by a test vector v ∈ V0
for the first equation and q ∈ Q for the incompressibility equation. For all further steps
to obtain the weak-form the reader is referenced to [20].
The resulting bilinear form a(·, ·) and linear form f(·) are
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a((u, p), (v, q)) = L((v, q)) (23)

a((u, p), (v, q)) =

∫
Ω

∇u · ∇v +∇ · (uq − vp)dx (24)

L((v, q)) =

∫
Ω

v · fdx+

∫
∂ΩN

g · vds (25)

Different implementations with weakly imposed pressure boundary conditions and weakly
imposed slip boundary conditions [21] were carried out but did not produce working
results. This is why they are not described in detail in this work. There are many
different ways to implement weak boundary conditions into finite element discretisations.
The most popular versions use Lagrange multipliers, penalty formulations and the Nitsche
method.

4.2.2 Finite element approximation with Taylor-Hood elements

The finite element approximation of the weak form can be formulated using functions
uh ∈ Vh and ph ∈ Ph in finite dimensional subspaces. Using the Galerkin method which
uses the same function spaces for approximating the test functions v one gets

a(uh, v) + b(v, ph) = l(v) ∀v ∈ Vh (26)

b(uh, q) = 0 ∀q ∈ Ph (27)

The functions uh and ph can then be expressed using a basis functions φi and χi as

uh =
∑
i

ξiφi, ph =
∑
i

ψiχi (28)

The linear system of equations can then be written as

[
a(φj, φi) b(φi, χj)
b(φj, χi) 0

] [
ξ
ψ

]
=

[
b
0

]
(29)

This is a so-called saddle point problem, which is known to be hard to solve. In the Stokes
system, the function spaces Vh and Ph for the approximation have to chosen wisely to meet
the so-called Discrete Inf-Sup- or LBB- condition which guarantees a unique solution [19].
The most common choice in incompressible fluid mechanics is to use continuous piecewise
quadratic functions for each velocity component and continuous piecewise linear functions
for the pressure field. These widely used finite elements are called Taylor-Hood elements
[20].
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5 Results

5.1 MD simulation data

Table 6: Carried out molecular dynamics simulations.

System Nr. t / ps F / kJ mol−1nm−1 kb / kJ/(mol nm2)
(13, 0) 0 100 1, 0 · 105 1, 0 · 104

1 100 1, 0 · 105 2, 5 · 104

2 100 1, 0 · 105 5, 0 · 104

3 100 1, 0 · 105 7, 5 · 104

4 100 1, 0 · 105 1, 0 · 105

5 100 1, 0 · 105 2, 5 · 105

6 100 1, 0 · 105 5, 0 · 105

7 100 1, 0 · 105 7, 5 · 105

8 100 1, 0 · 106 1, 0 · 106

9 100 1, 0 · 106 2, 0 · 106

10 100 1, 0 · 103 3, 2 · 106

11 100 5, 0 · 103 3, 2 · 106

12 100 1, 0 · 104 3, 2 · 106

13 100 5, 0 · 104 3, 2 · 106

14 100 1, 0 · 105 3, 2 · 106

15 100 2, 0 · 105 3, 2 · 106

16 100 3, 0 · 105 3, 2 · 106

17 100 4, 0 · 105 3, 2 · 106

18 100 5, 0 · 105 3, 2 · 106

19 100 1, 0 · 106 3, 2 · 106

20 100 1, 0 · 106 4, 1 · 106

21 100 1, 0 · 106 5, 0 · 106

(18, 0) 22 100 5, 0 · 104 3, 2 · 106

(30, 0) 23 100 7, 5 · 104 3, 2 · 106

24 100 1, 0 · 105 3, 2 · 106

25 100 1, 8 · 105 3, 2 · 106

26 100 2, 5 · 105 3, 2 · 106

27 100 4, 0 · 105 3, 2 · 106

28 100 5, 0 · 105 3, 2 · 106
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5.2 Molecular dynamics

The output data of the different simulations (which were listed in chapter 5.1) consisted
of trajectory files and information about the different physical quantities, which varied
during time steps.
To save on disk space the trajectory data of all atoms was only saved every 1000 steps.
This reduces the temporal correlations which are apparent when one thinks about the
occurrence of structuring as discussed earlier 2. To give an overview on the fluid flow in
the three systems, we start by showing the flow patterns.

5.2.1 Density profiles

To visualize this structured flow pattern, as an example a single time step of a simulation
is shown in Figure 10. It can be seen that the water molecules are arranged in packs of
four in each layer. This matches with the earlier presented Figures 2 & 3, which showed
structuring and the density profiles inside nanotubes.

Figure 10: A sample timestep from a molecular dynamics simulation of the (13,0) nan-
otube to show the effect of structuring in small nanotubes.

Figure 11: An example of the density profiles n(r) of the water molecules in the (13,0)
and (18,0) nanotube.
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Figure 12: An example of the density profiles n(r) of the water molecules in the (30,0)
nanotube.

5.2.2 Velocity profiles

In the smallest nanotube the structuring effect of the molecules can be seen easily by
plotting the axial velocity component uz as a function of the radius r. To mitigate the
effect of entrance and exit effects, only the waters in the central part (3 out 5 nm) of the
nanotube were considered. The data points were binned by velocity and radial position.
As the amount of particles in each bin depends on the simulation time, the linear colour
scale should only show a qualitative distribution. In the following Figures 13 & 14 the
pull force F was varied to see the effect of higher pressures on the flow. The water
molecules are arranged in a way that no single molecule is ever found near the centre of
the nanotube.

Figure 13: The velocity profiles uz(r) in the (13,0) nanotube. On the left the pull force
F = 10000kJ mol−1nm−1 and on the right F = 50000kJ mol−1nm−1
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Figure 14: The velocity profiles uz(r) in the (13,0) nanotube. On the left the pull force
F = 100000kJ mol−1nm−1 and on the right F = 250000kJ mol−1nm−1

An attempt was made to recover a parabolic flow profile or the slip length b through this
data. But this was not possible in this nanotube. In the search of a parabolic profile the
next larger (18,0) nanotube was examined. In Figure 19, the results can be seen. In this
system the data showed no underlying hint on a classical pipe flow profile. Thus, also
the determination of the slip length b is impossible.

Figure 15: The velocity profiles uz(r) in the (18,0) nanotube (left) and the (30,0) nanotube
(right). The pull force is F = 100000kJ mol−1nm−1.

5.2.3 Slip length through regression

Out of the simulations of the (30,0) systems parabolic flow profile (for example as shown
in following Figure 16) could be extracted.
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Figure 16: Data of the axial velocity uz as a function of the radius r. In this case a pull
force of F = 500000 kJ/(mol nm) was used. The red line is the fitted parabolic profile.
The slip length b was extracted by differentiating the fit at the carbon nanotube radius
and linearly extending of the flow domain.

This was carried out for a range of different pull forces F . The slip velocity uslip and the
slip length b are shown as a function of the applied pull force in the following Figure 17.

Figure 17: The slip velocity uslip and the slip length b as a function of the pull force F .
This was extracted from parabolic fits to uz(r) in the (30,0)-CNT system.

5.2.4 Microscopic Hagen-Poiseuille relation

To investigate the validity of the macroscopic linear relationship between pressure and
velocity, the mean velocity ⟨uz⟩ was extracted from the data of all simulations by av-
eraraging over the CNT length and all time steps. The relationship is shown in Figure
18. A regression of all but the last few data points show the linearity of the underlying
relationship over multiple orders of magnitude.
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Figure 18: The mean axial velocity ⟨uz⟩ as a function of the applied pull force F . Since
the corresponding simulations were carried out with and without a NPT step, both are
marked.

Out of the linear regression and the geometry of the system the following slip length b
for the "microscopic" Hagen-Poiseuille equation 19 can be extracted.

⟨uz⟩ = kF = 1.522 · 10−6F (30)

By assuming a constant velocity across the radius and thus multiplying this equation
with the cross-sectional area of the nanotube

Qslip = ⟨uz⟩R2
CNTπ = kFR2π (31)

one can get a expression for the volume flux Qslip. Then using the modified Hagen-
Poiseuille law

Qslip = Qclassical(1 +
4b

R
) =

∆pR4π

8ηlCNT

(1 +
4b

R
) (32)

Using the two equations defined above, ∆p = F/A, η = 1 mPa s and the values of the
geometry Apull, lCNT and R one can arrive at

b = (
8kηApulllCNT

R2
− 1) · R

4
= 0, 25 nm (33)

5.3 Volume flux

With the pull force F and the area of the puller sheet Apull the classical continuum volume
flux Qcontinuum can be calculated through the Hagen-Poiseuille equation as
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Qcontinuum =
πr4

8ηL

F

Apull

(34)

Out of the molecular dynamics simulation data, the particle flux n through the carbon
nanotubes were extracted. The following table shows the values of n which were found.
The mean number of particles in the tube and the trajectory of the particle flux n over
time in these three cases can be seen on the next page in the Figures 20, 21 & 22.

Table 7: volume flux vs force

F / kJ mol−1 nm−1 n / 1
50000 155
100000 253
250000 612

To get the volume flux Qsim from the particle flux Φflux in the simulation, one has to
divide by the medium number of water molecules per volume D ≈ 33 1/nm3,

Qsim =
Φflux

D
(35)

One can extract the slip length b by fitting the modified Hagen-Poiseulle equation 19 to
the simulated volume flux Qsim.
The flow enhancement factor EF can then be calculated as

EF =
Qslip

Qcontinuum

(36)

Using the simulation data in the smallest nanotube (see also the flux plots 202122) the
flow enhancement factor EF can be calculated as a function of the pressure difference.

Figure 19: The classical, modified Hagen-Poiseuille and simulated volume flux in five
simulations with different pull forces and the calculated flow enhancement factor.
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Figure 20: On top the current number n of water molecules in the nanotube is shown in
a simulation with a pull force F = 50000 kJ/(mol nm). Below, the cumulative particle
flux Φflux through the channel is shown.

Figure 21: On top the current number n of water molecules in the nanotube is shown in
a simulation with a pull force F = 100000 kJ/(mol nm). Below, the cumulative particle
flux Φflux through the channel is shown.

Figure 22: On top the current number n of water molecules in the nanotube is shown in
a simulation with a pull force F = 250000 kJ/(mol nm). Below, the cumulative particle
flux Φflux through the channel is shown.
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5.3.1 Variation of the carbon bond spring constant

To study the effect of different C-C bond parameters and also to try and model more
flexible channels, the harmonic spring constant kb was varied (see chapter 5.1). These
variations were carried out in the (13,0) system. Firstly, the dependence of the radius of
the atoms of the nanotube were considered. In the following Figures 23 & 24 the positions
of the carbons are displayed during two different simulations.

Figure 23: Position of the carbon atoms in a 100ps simulation at a realistic spring constant
of kb = 3200000 kJ mol−1nm−2 and a pull force F = 100000 kJ mol−1nm−1.

Figure 24: Position of the carbon atoms in a 100ps simulation at a very flexible spring
constant of kb = 100000 kJ mol−1nm−2 and a pull force F = 100000 kJ mol−1nm−1.
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The values of the mean carbon radius rCµ and the standard deviation σrC of the fitted
normal distribution to the histograms of the different nanotube parts were extracted.
The range of magnitude of different spring constant kb was simulated from very flexible
constantly twisting to stiffer than realistic tubes. The results of these simulations are
shown in the following Figure 25.

Figure 25: The mean carbon radius rCµ and the standard deviation σrC in the (13,0)
nanotube as a function of the C-C spring constant kb.

The mean velocity ⟨uz⟩ and the mean radial position rWµ of the water inside of the channel
were also calculated for the same simulations. Here, one can see a sharp drop in the water
velocity due to the increased flexing of the nanotube at low spring constants, which was
observed in the animations of the system.

Figure 26: The mean axial velocity ⟨uz⟩ and the mean radius rWµ of the water in the
(13,0) nanotube as a function of the C-C spring constant kb.
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5.3.2 Water mean radial position with increased pressure

Out of the simulations, which were used to check the microscopic Hagen-Poiseuille law
the mean radius rWµ of the waters inside the nanotube was also calculated. Since these
simulation runs were carried out once with an NPT step and once without it, these two
cases can also be compared.

Figure 27: The mean water radius rWµ against the applied pull force F

5.4 Finite element method

A finite element model was created to quantify and visualise the flow fields inside nan-
otubes using the continuum Stokes equation.

5.4.1 Setup, parameters and boundary conditions

A simulation setup was created in which the finite element mesh (see, for example Figure
28), the in/out-flow boundary conditions, the velocity slip-condition as well as an space
dependent viscosity can be varied as needed. Unfortunately, more complex simulations
could not be carried out to limit the scope of this work. The finite element implementation
was planned to be used to create a space dependent viscosity model to better describe
flows inside nanotubes and to iterate over different boundary conditions. A model with
added reservoirs was also added but shall not be shown in this work. To illustrate the
capabilities of this finite element setup, the following case study will be shown.

parameter value
dCNT 2,35 nm
lCNT 5 nm
ηWAT 1 mPa s
vslip 0,05 nm/ps
vinflow 0,09 nm/ps
voutflow 0,09 nm/ps

Table 8: Simulation parameters
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5.4.2 Simulation results

The simulation results using the finite element code FEnics (the code is in the Appendix)
of the described model problem can be seen in the following Figure 28. Here, the ab-
solute magnitude of the velocity field is plotted on each degree of freedom and linearly
interpolated. One can see the development of a boundary layer on the in and outflow
due to the prescribed constant inflow conditions.

Figure 28: The used simulation mesh, the velocity solution superimposed on the mesh
and the interpolated velocity field in the nanotube.

The axial velocity component uz was then extracted on different radial slices through the
domain. These slices and the corresponding velocity profile are shown in figure 29.

Figure 29: The velocity field solution with added slices through the domain, on the right
the line plots of the velocity profiles along these slices.

27 / 35



23SS
11.06.2023 Brunner Thomas Bachelor Thesis

6 Discussion
In this chapter, a comparison of results found in this work to the literature will be given.
First, the application of continuum theory on the microscopic scale will be questioned.
Then the large spread of observed slip lengths and corresponding enhanced flow rates
in theoretical, experimental and computational studies shall be highlighted. At last, a
quick overview on experimental studies is given to round off this work with a showcase
of experimental methods used to measure microscopic flows through carbon nanotubes.

6.1 On the validity of continuum theory at nanometer scales

Due to new manufacturing capabilities on the microscale, a rise in studies on nanofluidic
devices and the application of continuum mechanics to describe the relevant flows has
emerged. Many authors try to give lower bounds for the applicability of the Navier-Stokes
equations. The following three rules of thumb were taken directly out of the work [22]:

• Above 10 nm confinement, fluid transport is governed by continuum hydrodynamic
equations, with coupling to ion transport and surface effects.

• Below 10 nm –the domain of so-called single-digit nanopores – thermal fluctuations
and electrostatic correlations are increasingly important, challenging continuum and
mean-field theory.

• In few nanometre confinement, fluid structuring effects and correlations play an
overwhelming role.

In another study [12], the author finds that

• The Navier-Stokes equations with stick boundary conditions apply in channels larger
than 150 molecular diameters (≃50 nm) regardless of the strength of the fluid-wall
binding energy.

Since this work focused only on systems with a size of a few nanometers, big deviations
from continuum theory with standard no-slip boundary conditions are expected. The
importance of hydrogen bonding and van der Waals forces at the interplay of water
molecules within nanotubes is apparent. The mentioned structuring effect was found to
be essential to understand the velocity profiles inside the nanotube. As expected, it was
also found that these structuring effects get less important as the size of the nanotube
increases. In bigger nanotubes, the structuring effect is the most present in the regions
near the wall and decreases radially. Continuum theory nevertheless gives a reference to
which one can compare molecular dynamics simulation, although at these length scale
continuum theory is also not meant to describe the phenomena of molecular processes.
The Hagen-Poiseuille law especially showed itself to be a good benchmark to compare
the pressure-flow characteristics of nanoflows.

6.2 Variations in observed slip lengths

To compare the relatively small slip lengths found in this work to literature values many
factors have to be taken into account. The applied pressure, bond parameters, water
models and tube flexibility have an effect on the calculated slip length. In other studies it
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was also found that the chiral-indices (n,m) of the nanotubes have a considerable impact
on the slip length. A main problem of the entire field is that it is difficult to have
reproduceable simulation and experimental results. Over the years, many authors have
run different setups with widely scattered results. The following Figure 30, which plots
the observed slip length across a range of studies, shows just how big the variations really
are. For some tube diameters the slip length varies three orders of magnitude.

Figure 30: Slip length b from simulations (blue), theoretical predictions (black) and
experiment (red). This image was reproduced from [3]

Comparing simulation results with experimental studies also does not seem to shed much
light on which parameters offer the best description of reality. This is partly due to
the fact that experimental results also scatter dramatically. In the next section, two
experimental setups will be shown.
One potential problem in data analysis, which was also encountered during this thesis,
is the method of fitting a parabola to the simulated velocity profiles. At low pressure
gradient the resulting velocity profiles are very hard to fit because of the high noise
inflicted by thermal fluctuations. This is also reported in the literature [3]. Even long
simulation times in the order of tens of nanoseconds often result in small fluid velocity
gradient at low speed. Fitting this kind of data can result in any slip length. These
results are highly unpredictable. Since in this work very high pressures were used with
smaller simulation times the statistics are worse than in other studies. Nevertheless, the
high velocity gradients induced by such pressures resulted in small slip lengths. Due
to these difficulties it seems unlikely that a consensus in observed slip lengths and flow
enhancements of theory, experiment and simulation will be found anytime soon.
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6.3 Experimental methods for nanoflows

Precise measurement of flow rates in nanocapillaries through direct flow rate measurement
have been conducted but are very difficult because of the small flow rates in the range
of ≈ 1 pl/s and the required probing sensitivity. The experimental study [23] uses an
alternative measurement approach. They use an external liquid flow containing tracer
particles to superimpose the jet flow through a carbon nanotube (see Figure 31). This
kind of jet flow injected in a outside fluid medium is called a Landau–Squire jet. The
velocity field of the outside flow was then measured using the injected tracer particles.

Figure 31: Experimental setup using a Landau–Squire jet. [23]

This study carried out a range of experiments by varying the carbon nanotube radius.
The resulting measured flow enhancement factor kNT/k

ref
no−slip and the corresponding slip

length b are shown in the following Figure 32.

Figure 32: Slip length b [23]

Another study [24] which focuses on the ionic transport in carbon nanotubes used an
experimental setup (see Figure 33) where a single nanotube was fixated between two
reservoirs using photoresist. The protruding ends of the tube were then cut off using a
focused ion beam.

30 / 35



23SS
11.06.2023 Brunner Thomas Bachelor Thesis

Figure 33: Experimental setup using a nanotube casted in photoresist. [24]

The slip length b of this system was then extracted out of the measured charge density.
Figure 34 shows the results gained by this work and other experimental studies in the
microscopic regime.

Figure 34: Slip length b [24]

As already stated in section 6.2, results for the flow enhancement factor and the slip
length scatter dramatically between experiments and simulations. This is well-known in
the field and is a frequent topic of discussion.
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7 Conclusion
The obtained values for the slip length and the resulting flow enhancements appear smaller
than in previous simulations. It is unclear what differences in simulation settings cause
this discrepancy. The linear nature of the Hagen-Poiseuille law and its slip flow equivalent
were shown to hold up to very high pressures and also work in very small nanotubes. The
variation of the harmonic bond constant showed effects on the velocity and on the mean
radii of water molecules and the nanotube. Against expectations a increase in flexibility
caused a decrease in observed volume flux. This is thought to be caused by increased
water-wall interactions. Despite the significant progress made in understanding the in-
teractions of water in carbon nanotubes, several challenges and unanswered questions
remain. Further research is needed to understand the role of water models and their
interaction with carbon. The large spread of observed slip lengths in simulations with
different simulation settings makes it difficult to gain knowledge about individual system
characteristics. The method of calculating slip lengths by fitting parabolic profiles seems
very inconsistent at small pressures and should be questioned. Due to these facts the field
does not agree on the amount of flow enhancement which exists in carbon nanotubes.
At least the existence of some form of slip and corresponding enhancements is broadly
accepted. It is safe to say that the study of microscopic confined water flows will continue
to gain important insights to biological systems. As nanofluidics is a relatively new field,
research in innovative technical devices which harness microscopic effects will increase in
the next decades. Only the future can tell what impact on humanity this research field
will have. Most importantly are, of course, more experimental studies with capabilities of
probing water transport at the nanoscale to validate the theoretical and computational
results presented in the literature. Only such controlled experiments can shine a light on
the true nature of nanoflows and select correct theoretical models.
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9 Appendix
Due to large amount of code written in the molecular dynamics and finite element parts of
this thesis, it is not practical to attach it in the appendix. Here I give a short description
of each created code file. The code can be found on the following repository:
https://github.com/brunner-th/WaterFlowsInCarbonNanotubes.

9.1 MD-Code

• gro_file_create.py

Creation of the .gro- and .itp-files which contain all information about the geometry,
bonds and potentials.

• edr_reader.py

Reading in .edr-files which contain simulated values of the potential energy, pressure and
temperature. For this the library panedr (https://github.com/MDAnalysis/panedr)
was used.
Creation of the all the plots given in this thesis was done in the following files:

• carbon_radius.py

• cnt_plots.py

• flow_enhancement_factor.py

• slip_length_vs_force.py

• cnt_heatmap_with_stepwise_mean.py

• small_cnt_plot_speed_vs_bondk.py

• cnt_plot_speed_vs_pressure_from_pull_force.py

• cnt_volume_flux_vs_time.py

9.2 FE-Code

A few test programs were written to learn the FEnics framework and get the simulations
to run. These shall not be included in the repository. A good introduction to FEnics can
be found on the projects documentation page.

• stokes_cnt_axisymm_var_viscosity.py

To read the created .xdmf-files the open-source software ParaView [25] was used.
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